Выращивание искусственных кристаллов в домашних условиях. Основные области применения искусственных кристаллов. Поверхностные оптические эффекты

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Исследовательская работа

КРИСТАЛЛЫ И ИХ ПРИМЕНЕНИЕ

Автор работы: Кривошеев Евгений

ученик 7«Б» класса МБОУСОШ №1

Г.Завитинска Амурской области

Руководитель работы : Конченко Н.С.

учитель физики МБОУСОШ №1

Г.Завитинска Амурской области

Завитинск.

2013г.

  • Введение
  • 1. Кристалл. Его свойства, строение и форма
  • 2. Жидкие кристаллы
  • 3. Применение ЖК
  • 4. Применение кристаллов в науке и технике
  • 5. Практическая часть
  • Заключение
  • Список литературы
  • Введение
  • Актуальность работы :
  • Так как кристаллы имеют широкое применение в науке и технике, то трудно назвать такую отрасль производства, где не использовались бы кристаллы. Поэтому знать и разбираться в свойствах кристаллов очень важно для каждого человека.
  • Цель исследования : Выращивание кристалла из раствора в домашних условиях, изучение практического применения кристаллов в науке и технике.
  • Задачи:
  • 1.Изучение теории о кристаллах.
  • 2.Изучение материала по выращиванию кристалла в обычных условиях и в лабораторных условиях.
  • 3.Наблюдение за образованием кристалла.
  • 4.Описание наблюдений.
  • 5.Изучение области применения кристаллов в современной жизни.

1. Кристалл. Его свойства, строение и форма

Слово «кристалл» происходит от греческого «crustallos », то есть «лед». Твердые тела, атомы или молекулы которых образуют упорядоченную периодическую структуру (кристаллическую решетку).

Образование кристаллов.

Кристаллы образуются тремя путями: из расплава, из раствора и из паров. Примером кристаллизации из расплава может служить образование льда из воды. кристалл жидкий выращивание лабораторный

Вокружающем нас мире часто можно наблюдать образование кристаллов непосредственно из газовой среды, из растворов и из расплава. В тихую морозную ночь при ясном небе, в ярком свете луны или фонаря, мы иногда видим поблескивающие искорками медленно опускающиеся чешуйки инея. Это пластинчатые кристаллики льда, образующиеся тут же около нас из влажного и остывшего воздуха.

Структура твердых тел зависит от условий, в которых происходит переход из жидкого в твёрдое состояние. Если такой переход происходит очень быстро, например, при резком охлаждении жидкости, то частицы не успевают выстроиться в правильную структуру и образуется мелкокристаллическое тело. При медленном охлаждении жидкости получаются крупные и правильной формы кристаллы. В некоторых случаях, для того чтобы вещество закристаллизовалось, его приходиться выдерживать при различных температурах. Также на рост кристалла влияет внешнее давление. Кроме того, значительная часть кристаллов, имевших в далеком прошлом совершенную огранку, успела утратить ее под действием воды, ветра, трения о другие твердые тела. Так, многие округлые прозрачные зерна, которые можно найти в прибрежном песке, являются кристаллами кварца, лишившимися граней в результате длительного трения друг о друга.

Строение кристаллов

Разнообразие кристаллов по форме очень велико.

Кристаллы могут иметь от четырех до нескольких сотен граней. Но при этом они обладают замечательным свойством - какими бы ни были размеры, форма и число граней одного и того же кристалла, все плоские грани пересекаются друг с другом под определенными углами. Углы между соответственными гранями всегда одинаковы. На форму оказывают влияние такие факторы, как температура, давление, частота, концентрация и направление движения раствора. Поэтому кристаллы одного и того же вещества могут обнаруживать большое разнообразие форм.

Кристаллы каменной соли, например, могут иметь форму куба, параллелепипеда, призмы или тела более сложной формы, но всегда их грани пересекаются под прямыми углами. Грани кварца имеют форму неправильных шестиугольников, но углы между гранями всегда одни и те же -- 120°.

Закон постоянства углов, открытый в 1669 г. датчанином Николаем Стено, является важнейшим законом науки о кристаллах -- кристаллографии.

Измерение углов между гранями кристаллов имеет очень большое практическое значение, так как по результатам этих измерений во многих случаях может быть достоверно определена природа минерала.

Простейшим прибором для измерения углов кристаллов является прикладной гониометр.

Виды кристаллов

Кроме того различают монокристаллы и поликристаллы.

Монокристалл представляет собой монолит с единой ненарушенной кристаллической решеткой. Природные монокристаллы больших размеров встречаются очень редко.

Монокристаллами являются кварц, алмаз, рубин и многие другие драгоценные камни.

Большинство кристаллических тел являются поликристаллическими, то есть состоят из множества мелких кристалликов, иногда видных только при сильном увеличении.

Поликристаллами являются все металлы.

2. Жидкие кристаллы

Жидкий кристалл - это особое состояние вещества, промежуточное между жидким и твердым состояниями. В жидкости молекулы могут свободно вращаться и перемещаться в любых направлениях. В жидком кристалле имеется некоторая степень геометрической упорядоченности в расположении молекул, но допускается и некоторая свобода перемещения.

Консистенция жидких кристаллов может быть разной - от легкотекучей жидкой до пастообразной. Жидкие кристаллы имеют необычные оптические свойства, что используется в технике.Жидкие кристаллы образуются из молекул, имеющих разную геометрическую форму. таких, как цвет, прозрачность и др. На всем этом основаны многочисленные применения жидких кристаллов.

3. Применение ЖК

Расположение молекул в жидких кристаллах изменяется под действием таких факторов, как температура, давление, электрические и магнитные поля; изменения же расположения молекул приводят к изменению оптических свойств, таких, как цвет, прозрачность и способность к вращению плоскости поляризации проходящего света. На всем этом основаны многочисленные применения жидких кристаллов. Например, зависимость цвета от температуры используется для медицинской диагностики. Нанося на тело пациента некоторые жидкокристаллические материалы, врач может легко выявлять затронутые болезнью ткани по изменению цвета в тех местах, где эти ткани выделяют повышенные количества тепла. Температурная зависимость цвета позволяет также контролировать качество изделий без их разрушения. Если металлическое изделие нагревать, то его внутренний дефект изменит распределение температуры на поверхности. Эти дефекты выявляются по изменению цвета нанесенного на поверхность жидкокристаллического материала.

Тонкие пленки жидких кристаллов, заключенные между стеклами или листками пластмассы, нашли широкое применение в качестве индикаторных устройств. Жидкие кристаллы широко применяются в производстве наручных часов и небольших калькуляторов. Создаются плоские телевизоры с тонким жидкокристаллическим экраном.

4. Применение кристаллов в науке и технике

В наше время кристаллы имеют очень широкое применение в науке, технике и медицине.

Алмазными пилами распиливают камни. Алмазная пила - это большой (до 2-х метров в диаметре) вращающийся стальной диск, на краях которого сделаны надрезы или зарубки. Мелкий порошок алмаза, смешанный с каким-нибудь клейким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень.

Огромное значение имеет алмаз при бурении горных пород, в горных работах. В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия. Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвёрдые сплавы. Сам алмаз можно резать, шлифовать и гравировать только самим же алмазом. Наиболее ответственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Корундом можно сверлить, шлифовать, полировать, точить камень и металл. Из корунда и наждака делают точильные круги и бруски, шлифовальные порошки и пасты. На полупроводниковых заводах тончайшие схемы рисуют рубиновыми иглами.

Гранат также используется в абразивной промышленности. Из гранатов изготовляют шлифовальные порошки, точильные круги, шкурки. Они иногда заменяют в приборостроении рубин.

Из прозрачного кварца делают линзы, призмы и др. детали оптических приборов. Искусственное «горное солнце» - аппарат, широко применяемый в медицине. При включении данный аппарат излучает ультрафиолетовый свет, эти лучи являются целебными. В данном аппарате лампа сделана из кварцевого стекла. Кварцевая лампа используется не только в медицине, но и в органической химии, минералогии, помогает отличить фальшивые марки, денежные купюры от настоящих. Чистые бездефектные кристаллы горного хрусталя используются при изготовлении призм, спетрографов, поляризующих пластинок.

Флюорит используется для изготовления линз телескопов и микроскопов, для изготовления призм спектрографов и в других оптических приборах.

5. Практическая часть

Выращивание кристаллов медного купороса.

Медный купорос -- пятиводный сульфат меди, так как крупные кристаллы напоминают цветное синее стекло. Медный купорос применяют в сельском хозяйстве для борьбы с вредителями и болезнями растений, в промышленности при производстве искусственных волокон, органических красителей, минеральных красок, мышьяковистых химикатов.

Способ выращивания в домашних условиях:

1) Для начала приготовим раствор концентрированного купороса. После этого слегка подогреем смесь, чтобы добиться полного растворения соли. Для этого стакан поставим в кастрюлю с теплой водой.

2) Полученный концентрированный раствор перельем в банку или химический стакан; туда же подвесим на нитке кристаллическую "затравку" - маленький кристаллик той же соли - так, чтобы он был погружен в раствор. На этой "затравке" и предстоит расти будущему экспонату вашей коллекции кристаллов.

3) Сосуд с раствором поставим в открытом виде в теплое место. Когда кристалл вырастет достаточно большим, вынем его из раствора, обсушим мягкой тряпочкой или бумажной салфеткой, обрежем нитку и покроем грани кристалла бесцветным лаком, чтобы предохранить от "выветривания" на воздухе.

Наблюдение за процессом роста кристаллов медного купороса.

Для начала мы налили в химический стакан раствор медного купороса, привязали на нитку затравку. И опустили в стакан кристалл. Уже на следующий день у нас появился поликристалл довольно больших размеров, около 2 сантиметров в длине. Сам кристалл был очень неровный, с небольшими столбцами. Дальше кристаллизация не продолжалась, сколько бы мы не ждали.

Но мы на этом не останавливались и сделали ещё два кристалла медного купороса. Только затравку мы взяли из столбца неполучившегося кристалла. В одном растворе температура постоянно менялась, а в другом стакане была неизменной. Через несколько суток у нас получились два полноценных монокристалла медного купороса. Они получились с ровными гранями, абсолютно симметричные. Так я понял что для того чтобы сделать ровный кристалл надо чтобы затравка тоже была ровной и симметричной.

Наблюдение за процессом роста кристаллов в растворах солей под микроскопом.

Рассматривать кристаллы под микроскопом очень интересно, так как чем "моложе" кристалл, тем более правильную форму он имеет. Изучение кристаллов под микроскопом не занимает много времени и ресурсов: для приготовления раствора необходимо всего несколько грамм соли, да и времени на рост кристалла уходит не так много.

Наносили на предметное стекло микроскопа несколько капель насыщенного раствора различных солей. Стекло слегка подогревали пламенем спиртовки и помещали на столик микроскопа. Перемещением предметного стекла и регулированием увеличения добивались такого положения, чтобы капля заняла все поле зрения микроскопа. Через небольшой промежуток времени (около 1 мин) на краю капли, где она высыхает быстрее, начиналась кристаллизация. Возникшие мелкие кристаллы образовывали по краям капли сплошную непрозрачную корку, которая в проходящем свете кажется темной. Постепенно из этой массы кристаллов начинали проступать направленные внутрь капли отдельные острия индивидуальных кристаллов, которые, разрастаясь, образуют разнообразные формы. Чаще всего новые центры кристаллизации в свободном пространстве внутри капли, как правило, самопроизвольно не возникали. Через некоторое время все поле зрения заполнялось кристаллами, и кристаллизация практически заканчивалась.

Заключение

Таким образом, кристаллы одни из самых красивых и загадочных творений природы. Мы живем в мире, состоящем из кристаллов, строим из них, обрабатываем их, едим их, лечимся ими… Изучением многообразия кристаллов занимается наука кристаллография. Она всесторонне рассматривает кристаллические вещества, исследует их свойства и строение. В давние времена считалось, что кристаллы представляют собой редкость. Действительно, нахождение в природе крупных однородных кристаллов - явление нечастое. Однако мелкокристаллические вещества встречаются весьма часто. Так, например, почти все горные породы: гранит, песчаники, известняк - кристалличны. Даже некоторые части организма кристалличны, например, роговица глаза, витамины, оболочка нервов. Долгий путь поисков и открытий, от измерения внешней формы кристаллов вглубь, в тонкости их атомного строения еще не завершен. Но теперь исследователи довольно хорошо изучили его структуру и учатся управлять свойствами кристаллов.

В результате проведенной работы я могу сделать следующие выводы:

1. Кристалл - это твердое состояние вещества. Он имеет определенную форму и определенное количество граней.

2. Кристаллы бывают разных цветов, но в большинстве своём прозрачны.

3. Кристаллы - совсем не музейная редкость. Кристаллы окружают нас повсюду. Твёрдые тела, из которых мы строим дома и делаем станки, вещества, которые мы употребляем в быту, - почти все они относятся к кристаллам. Песок и гранит, поваренная соль и сахар, алмаз и изумруд, медь и железо - всё это кристаллические тела.

4. Самые ценные среди кристаллов - драгоценные камни.

5. Я вырастил кристалл в домашних условиях из насыщенного раствора медного купороса.

Таким образом, цели и задачи, которые были обозначены мной в начале работы, достигнуты. В результате проведенной работы я опытным путём нашёл доказательство для предположения, которое было высказано английским кристаллографом Франком о ступенчатом росте кристаллов.

Проведенная работа была очень интересной и занимательной. Мне бы хотелось ещё вырастить кристаллы из других веществ, ведь их так много вокруг нас…

Размещено на Allbest.ru

...

Подобные документы

    Твёрдые кристаллы: структура, рост, свойства. "Наличие порядка" пространственной ориентации молекул как свойство жидких кристаллов. Линейно поляризованный свет. Нематические, смектические и холестерические кристаллы. Общее понятие о сегнетоэлектриках.

    курсовая работа , добавлен 17.11.2012

    Примеры применения монокристаллов. Семь кристаллических систем: триклинная, моноклинная, ромбическая, тетрагональная, ромбоэдрическая, гексагональная и кубическая. Простые формы кристаллов. Получение перенасыщенного раствора и выращивание кристалла.

    презентация , добавлен 09.04.2012

    История открытия жидких кристаллов, особенности их молекулярного строения, структура. Классификация и разновидности жидких кристаллов, их свойства, оценка преимуществ и недостатков практического использования. Способы управления жидкими кристаллами.

    курсовая работа , добавлен 08.05.2012

    Общая характеристика поверхностных явлений в жидких кристаллах. Рассмотрение отличительных особенностей смектических жидких кристаллов, различных степеней их упорядочения. Исследование анизотропии физических свойств мезофазы, степени упорядочения.

    реферат , добавлен 10.10.2015

    Жидкокристаллическое (мезоморфное) состояние вещества. Образование новой фазы. Типы жидких кристаллов: смекатические, нематические и холестерические. Термотропные и лиотропные жидкие кристаллы. Работы Д. Форлендера, способствовавшие синтезу соединений.

    презентация , добавлен 27.12.2010

    История открытия жидких кристаллов. Их классификация, молекулярное строение и структура. Термотропные жидкие кристаллы: смектический, нематический и холестерический тип. Лиотропные ЖК. Анизотропия физических свойств. Как управлять жидкими кристаллами.

    реферат , добавлен 27.05.2010

    Понятие строения вещества и основные факторы, влияющие на его формирование. Основные признаки аморфного и кристаллического вещества, типы кристаллических решеток. Влияние типа связи на структуру и свойства кристаллов. Сущность изоморфизма и полиморфизма.

    контрольная работа , добавлен 26.10.2010

    Физические и физико-химические свойства ферритов. Структура нормальной и обращенной шпинели. Обзор метода спекания и горячего прессования. Магнитные кристаллы с гексагональной структурой. Применение ферритов в радиоэлектронике и вычислительной технике.

    курсовая работа , добавлен 12.12.2016

    Эпитаксия - ориентированный рост одного кристалла на поверхности другого (подложки). Исследование форм кристаллов NaCl, образуемых при сублимации из водного раствора; структурное соответствие эпитаксиальных пар по срастающимся граням и отдельным рядам.

    курсовая работа , добавлен 04.04.2011

    Изучение понятия, видов и способов образования кристаллов - твердых тел, в которых атомы расположены закономерно, образуя трехмерно-периодическую пространственную укладку - кристаллическую решетку. Образование кристаллов из расплава, раствора, пара.

С развитием технологий человечество научилось ускоренными методами производить многое из того, на что природе нужны тысячелетия. Не стали исключением и драгоценные камни. Так как многие из природных минералов имеют не только ювелирную ценность, но и применяются в различных областях науки и производства, возможность получить кристалл с точно заданными характеристиками оказалась очень привлекательной. Не миновала сия судьба и корунды, известные большей части человечества как . Как получают искусственный сапфир и можно ли отличить его от настоящего камня?

История

История искусственных корундов началась в 1904 году, когда Огюст Верней обнародовал метод получения искусственных минералов при помощи вертикальной горелки, потока воздуха и порошка глинозема. Что интересно, ученый совершил открытие намного раньше, но не стал сразу его обнародовать.

В дальнейшем учеными разных стран были запатентованы другие способы производства искусственных кристаллов. Большой вклад в развитие этих технологий внесли ученые из СССР. В институте кристаллографии Академии Наук СССР им. А.В. Шубникова был разработан способ выращивания корундов с заданными размером и направлением кристаллизации.

В середине ХХ века американской компанией «Линде» был запатентован способ выращивания искусственных сапфиров, обладающих эффектом астеризма.

Различные способы получения

Сегодня существует три самых распространённых метода выращивания кристаллов. Стоит сразу отметить, что они используются для получения не только корундов, но и других минералов, использующихся в ювелирном деле и промышленности.

Метод Вернейля

По принятым сейчас стандартам фамилия этого ученого читается как Вернее, но наименование метода уже прижилось. Суть метода в том, что под воздействием кислорода глиноземная смесь проходит через пламя, плавится и собирается на специальном штифте. После этого штифт снова помещают в пламя, и успевший застыть материал снова плавится, при этом образуются несколько кристаллов. Тот из них, который ориентирован в сторону самого быстрого роста, и становится затравкой для нового камня.

Кристаллы, выращенные таким образом, называются Були. Возможно, это связано с тем, что первые полученные образцы имели округлую форму.

Основан на сильном нагревании вещества, из которого планируется вырастить кристалл в огнеупорном контейнере. После преодоления точки плавления, внутрь помещается затравка будущего кристалла, вокруг которой он начинает образовываться. Во время роста кристалла затравку постепенно поднимают вверх, одновременно вращая вокруг своей оси. В итоге получается узкий и довольно длинный кристалл.

Метод зоной плавки

Еще один способ, ставший в последнее время довольно популярным, это метод зоной плавки. Части контейнера с материалом для будущего камня последовательно нагревают. Благодаря этому растет кристалл.

Научились люди и изготавливать самые ценные сапфиры, звездчатые. Технология была разработана подразделением фирмы «Юнаон Карбайд Корпорейшн» и подразумевает добавление рутила в глинозёмную смесь. Контролировать размер и расположение рутиловых иголок можно, регулируя скорость потока кислорода, проходящего по сосуду с расплавом. Создание кристалла в этом случае осуществляется методом Вернейля.

Как отличить?

Несмотря на то, что современные искусственные сапфиры мало чем уступают природным, некоторые покупатели желают быть уверенными, что приобретают именно натуральный камень.

Существует несколько признаков, по которым можно определить происхождение корунда:

  • Цена. Несмотря на то, что искусственные минералы имеют сравнительно высокую стоимость, она всё же намного ниже, чем стоимость природных корундов. Поэтому, если какое-то изделие стоит намного меньше, чем обычно стоят украшения с сапфирами, это искусственный камень. Главный недостаток метода в том, что он работает только в честных ювелирных магазинах
  • Сертификат. У каждого камня, использованного в ювелирных целях, есть сертификат, в котором перечислены все манипуляции, которые с ним проводились. Если сапфир искусственный, то это тоже будет указано. Нежелание или неспособность продавца предоставить сертификат – признак того, что покупателю предлагают не природный камень. Причем речь может идти не только о искусственном сапфире, который драгоценным камнем все-таки является, а о более грубых подделках.
  • Внешние данные. Как бы парадоксально это не звучало, но искусственные кристаллы намного красивее естественных. Современные технологии позволяют проконтролировать каждый момент роста камня и вырастить кристалл с точно заданными характеристиками. В них не бывает посторонних включений, которые встречаются абсолютно во всех природных сапфирах. Единственное, что может быть заметно в искусственном камне – пузырьки газа.
  • Если говорить о кристаллах, обладающих эффектом астеризма, то у естественных звезда на поверхности будет перемещаться , у искусственных – нет.
  • Поместить кристалл в емкость, наполненную водой, и поставить на белый лист. Направить освещение сбоку. Прямые полосы – натуральный , искривленные – искусственный.
  • В ультрафиолетовых лучах натуральные кристаллы демонстрируют белые блики. У искусственно выращенных этот эффект отсутствует.

Справедливости ради стоит отметить, что искусственный сапфир, все-таки является сапфиром и по своему химическому составу, и по характеристикам. Большую проблему составляют попытки некоторых недобросовестных дельцов выдать за корунды другие, более дешевые ювелирные камни, стекляшки или своеобразные композитные кристаллы, называемые «дуплет» или «триплет». Это склеенные между собой куски природного сапфира (сверху) и стекла или более дешёвых кристаллов (снизу). Обнаружить подделку можно под лупой.

Искусственные корунды – полезный материал, использующийся не только в ювелирных украшениях, но и во многих производственных отраслях. Промышленными методами можно создать идеально чистые бесцветные сапфиры, с которыми хоть раз сталкивался каждый современных человек. Например, из них производят усиленные стекла для различных гаджетов или наручных часов. А цветные искусственные кристаллы весьма достойно смотрятся в различных ювелирных изделиях, при этом они доступны большинству покупателей.

Искусственные камни давно завоевали популярность в ювелирных изделиях. Ведь для ювелира ценность камня определяется не только его дефицитом в природе. Важную роль играет целый ряд других характеристик:

  • цвет;
  • светопреломление;
  • прочность;
  • вес в каратах;
  • размер и форма граней и др.

Самый дорогой искусственный драгоценный камень Фианит (синонимы: даймонсквай, джевалит, кубик циркония, шелби). Его цена невелика – менее 10$ за 1 карат (это 0,2 грамма). Но стоит отметить, что с увеличением каратов цена растет экспоненциально. Например, алмаз в 10 карат стоит в 100 раз дороже алмаза 1 карат.

Искусственные кристаллы ювелирных камней можно вырастить в домашних условиях. Большинство подобных экспериментов не нуждаются в специальной подготовке, вам не понадобится обустраивать химическую лабораторию и даже приобретать специальные реактивы.

Для приобретения опыта выращивания кристаллов начинайте с малого. Мы поделимся техникой выращивания красивых кристаллов из всего, что вы можете найти фактически на собственной кухне. Вам вообще не понадобится дополнительный инвентарь, ведь все необходимое точно стоит на полках. Так же рассмотрим технологию выращивания искусственных рубинов в домашних условиях!

Как вырастить кристаллы рубинов синтетически?

Выращивание кристаллов рубина может даже стать вариантом домашнего бизнеса. Ведь красивые синтетические камни уже сегодня пользуются большим спросом среди покупателей, поэтому в случае успешной реализации проекта могут принести вам неплохую прибыль. Синтетически выращенные камни используются ювелирами, а также имеют широкое применение в технике.

Кристаллы рубина можно выращивать по стандартной методике, подобрав правильные соли. Но это будет не столь эффективно, как в случае с солью или сахаром, при этом намного дольше по длительности является процесс роста. Да и качество будет сомнительное. Ведь натуральный рубин по шкале твердости Моосу уступает только Алмазу занимая почетное 9-е место. Естественно, если речь идет о бизнесе, в большинстве случаев используют другой способ, разработанный более 100 лет назад во Франции.

Вам потребуется специальный аппарат, имеющий название по имени изобретателя данного способа, т. е. аппарат Вернейля. С его помощью можно выращивать кристаллы рубина, размером до 20-30 карат всего за несколько часов.

Хотя технология остается примерно такой же. Соль двуокиси алюминия с примесью оксида хрома помещают в накопитель кислородно-водородной горелки. Расплавляем смесь, наблюдая, как фактически "на глазах" вырастает рубин.

В зависимости от состава выбранной вами соли вы можете регулировать цвет кристаллов, получая искусственные изумруды, топазы и абсолютно прозрачные камни.

Работа с аппаратом потребует от вас внимания и некоторого опыта, но зато в дальнейшем вы получите возможность выращивать кристаллы, которые завораживают своей красотой, прозрачностью и игрой цвета. В дальнейшем такие шедевры хорошо подаются огранке и шлифовке, соответственно, могут применяться по назначению.

Стоит отметить, что искусственно выращенные кристаллы не являются драгоценными камнями, поэтому, даже если вы решите заняться предпринимательской деятельностью по их выращиванию, это не потребует от вас дополнительного лицензирования.

Конструкция аппарата несложна, ее легко можно сделать самостоятельно. Но на просторах Интернета уже достаточно умельцев, предлагающих чертежи оригинальной установки, а также ее усовершенствованные варианты.

Набор для выращивания кристаллов рубина в домашних условиях

Сам принцип технологии производства рубинов достаточно прост и схематически изображен ниже на рисунке:

Понимая принцип действия, любое устройство уже не кажется таким сложным. Один из образцов чертежей аппарата Вернейля:

По данной технологии можно так же выращивать и другие дорогие искусственные камни, такие как «Голубой Топаз» и т.п.

Выращивание кристаллов из соли в домашних условиях

Самый простой и доступный эксперимент, который вы можете провести – создать красивые солевые кристаллы. Для этого вам понадобится несколько предметов:

  1. Обычная каменная соль.
  2. Вода. Важно, чтобы сама вода содержала как можно меньше собственных солей, а лучше дистиллированная.
  3. Емкость, в которой будет проводиться опыт (сгодится любая банка, стакан, кастрюля).

Наливаем в емкость теплую воду (ее температура составляет около 50°С). Добавляем в воду кухонную соль и размешиваем. После растворения добавляем снова. Повторяем процедуру до тех пор, пока соль не перестанет растворяться, оседая на дно сосуда. Это говорит о том, что солевой раствор стал насыщенным, что нам и было нужно. Важно, чтобы во время приготовления раствора его температура оставалась постоянной, не остывала, так мы сможем создать более насыщенный раствор.

Насыщенный раствор переливаем в чистую банку, отделяя от осадка. Выбираем отдельный кристалл соли, а потом помещаем его в емкость (можно подвесить на нитке). Эксперимент выполнен. Через несколько дней вы сможете увидеть, как увеличился в размерах ваш кристалл.

Выращивание кристаллов из сахара в домашних условиях

Технология получения сахарных кристалликов аналогична предыдущему способу. Можно опустить ватный жгут в раствор, тогда сахарные кристаллы будут нарастать на нем. Если процесс роста кристаллов стал медленнее, значит уменьшилась концентрация сахара в растворе. Добавьте в него снова сахарного песка, тогда процесс возобновится.

На заметку: если добавить в раствор пищевого красителя, то и кристаллы станут разноцветными.

Можно выращивать сахарные кристаллики на палочках. Для этого вам потребуется:

  • уже готовый сахарный сироп, приготовленный аналогично солевому насыщенному раствору;
  • деревянные палочки;
  • немного сахарного песка;
  • пищевые красители (если хотите разноцветных леденцов).

Все происходит очень просто. Деревянную палочку обмакиваете в сиропе и обваливаете в сахарном песке. Чем больше крупинок прилипнет, тем красивее получится результат. Дайте палочкам, как следует высохнуть, а затем переходите попросту ко второй фазе.

Насыщенный горячий сахарный сироп выливаем в стакан, туда же помещаем заготовленную палочку. Если вы готовите разноцветные кристаллы, то в горячий готовый сироп добавьте пищевой краситель.

Следите, чтобы палочка не касалась стенок и дна, иначе результат будет некрасивым. Можно зафиксировать палочку с помощью листа бумаги, надев его сверху. Бумага послужит еще и крышкой для емкости, которая не позволит никаким посторонним частицам попасть в ваш раствор.

Примерно через неделю вы получите прекрасные сахарные леденцы на палочках. Ими можно украсить любое чаепитие, приведя в полный восторг не только детей, но и взрослых!

Выращивание кристаллов из медного купороса в домашних условиях

Кристаллы из медного купороса получаются интересной формы, при этом имеют насыщенный синий цвет. Стоит помнить, что медный купорос является химически активным соединением, поэтому кристаллы из него не следует пробовать на вкус, а при работе с материалом нужно проявлять осторожность. По этой же причине в данном случае подойдет только дистиллированная вода. Важно, чтобы она была химически нейтральной. Будьте внимательны и осторожны при обращении с медным купоросом.

При этом выращивание кристаллов из купороса происходит фактически по той же схеме, что и предыдущие случаи.

Помещая основной кристалл для выращивания в раствор, нужно проследить, чтобы он не соприкасался со стенками посуды. И не забывайте следить за насыщенностью раствора.

Если вы поместили свой кристалл на дне посудины, то стоит смотреть, чтобы он не касался других кристалликов. В этом случае произойдет их срастание, а вместо одного красивого крупного образца у вас получится масса невнятной формы.

Полезный совет! Вы можете самостоятельно регулировать размер граней своего кристалла. Если вы хотите, чтобы некоторые из них росли медленнее, их можно смазать вазелином или жиром. А для сохранности небесно-синего красавца можно обработать грани прозрачным лаком.

Существует 3 весовые категории бриллиантов:

  1. Мелкий. Масса 0,29 карата
  2. Средний. Масса от 0,3 до 0,99 карата
  3. Крупный. Бриллианты весом более 1 карата.

К популярным аукционам допускают камни массой от 6 карат. Камням с массой более 25 карат присваивают собственные имена. Например: «Винстон» бриллиант (62,05 карат) или «Де Бирс» (234,5 карат) и др.

Искусственные кристаллы

С давних пор человек мечтал синтезировать камни, столь же драгоценные, как и встречающиеся в природных условиях. До 20 века такие попытки были безуспешны. Но в 1902 удалось получить рубины и сапфиры, обладающие свойствами природных камней. Сейчас такие минералы производятся миллионами карат ежегодно!

Позднее, в конце 1940-х годов были синтезированы изумруды, а в 1955 фирма «Дженерал электрик» и Физический институт АН СССР сообщили об изготовлении искусственных алмазов.

Многие технологические потребности в кристаллах явились стимулом к исследованию методов выращивания кристаллов с заранее заданными химическими, физическими и электрическими свойствами. Труды исследователей не пропали даром, и были найдены способы выращивания больших кристаллов сотен веществ, многие из которых не имеют природного аналога. В лаборатории кристаллы выращиваются в тщательно контролируемых условиях, обеспечивающих нужные свойства, и лабораторные кристаллы образуются, так же, как и в природе - из раствора, расплава или из паров.

Применение искусственных кристаллов

Применения кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Поэтому ограничимся несколькими примерами.

Самый твердый и самый редкий из природных минералов - алмаз. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение. Благодаря своей исключительной твердости алмаз играет громадную роль в технике. Алмазными пилами распиливают камни. Алмазная пила - это большой (до 2-х метров в диаметре) вращающийся стальной диск, на краях которого сделаны надрезы или зарубки. Мелкий порошок алмаза, смешанный с каким-нибудь клейким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень. Колоссальное значение имеет алмаз при бурении горных пород, в горных работах. Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее ответственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.

Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные.

Есть у них ещё совсем невзрачный брат: бурый, непрозрачный, мелкий корунд - наждак, которым чистят металл, из которого делают наждачную шкурку. Корунд со всеми его разновидностями - это один из самых твердых камней на Земле, самый твердый после алмаза. Корундом можно сверлить, шлифовать, полировать, точить камень и металл. Из корунда и наждака делают точильные круги и бруски, шлифовальные порошки.

Вся часовая промышленность работает на искусственных рубинах. Новая жизнь рубина - это лазер, чудесный прибор наших дней. В 1960г. был создан первый лазер на рубине. Оказалось, что кристалл рубина усиливает свет. Лазер светит ярче тысячи солнц. Мощный луч - громадный мощностью. Он легко прожигает листовой металл, сваривает металлические провода, прожигает металлические трубы, сверлит тончайшие отверстия в твердых сплавах, алмазе. Эти функции выполняет твердый лазер, где используется рубин и гранат. В глазной хирургии применяется чаще всего лазеры на рубине.

Сапфир прозрачен, поэтому из него делают пластины для оптических приборов.

Кремень, аметист, яшма, опал, халцедон -- все это разновидности кварца. Мелкие зернышки кварца образуют песок. А самая красивая, самая чудесная разновидность кварца - это и есть горный хрусталь, т.е. прозрачные кристаллы кварца. Поэтому из прозрачного кварца делают линзы, призмы и др. детали оптических приборов. Особенно удивительны электрические свойства кварца. Если сжимать или растягивать кристалл кварца, на его гранях возникают электрические заряды.

Также кристаллы широко применяются для воспроизведения, записи и передачи звука.Существуют и кристаллические методы измерения давления крови в кровеносных сосудах человека и давления соков в стеблях и стволах растений. Электрооптическая промышленность - это промышленность кристаллов. Она очень велика и разнообразна, на её заводах выращивают и обрабатывают сотни наименований кристаллов для применения в оптике, акустике, радиоэлектронике, в лазерной технике.

В технике также нашел своё применение поликристаллический материал поляроид. Поляроидные пленки применяются в поляроидных очках. Поляроиды гасят блики отраженного света, пропуская весь остальной свет. Они незаменимы для полярников, которым постоянно приходится смотреть на ослепительное отражение солнечных лучей от заледеневшего снежного поля.

Поляроидные стекла помогут предотвратить столкновения встречных автомобилей, которые очень часто случаются из-за того, что огни встречной машины ослепляют шофера, и он не видит этой машины. Если же ветровые стекла автомобилей и стекла автомобильных фонарей сделать из поляроида, то ветровое стекло не пропустит света фонарей встречного автомобиля, "погасит его".

Путешествие к горизонтам знаний

Реховот

Искусственные кристаллы. Как их выращивают

(Публикация содержит частичный материал.
Интересующихся продолжением просьба звонить по тел. 050-9455328)

Немного истории

Материя, как хорошо известно, может находиться в трех агрегатных состояниях – газообразном, жидком и твердом, отличающихся друг от друга разной степенью взаимного притяжения молекул, атомов и ионов. В газах материальные частицы находятся в непрерывном движении. В твердых телах они "скованы ", причем в зависимости от того, хаотически или закономерно расположены частицы, различают аморфные и кристаллические твердые тела. Название кристалл (по - гречески "кристаллос", застывший на холоде) еще в глубокой древности относилось к прозрачному кристаллу шестиугольной формы - кварцу (горный хрусталь). Он считался "небесной влагой", которая образовалась из льда, охлажденного до такой степени, что даже сильное пламя неспособно было вернуть его в первоначальное состояние.

Многогранники и симметрия

С незапамятных времен при производстве горных работ люди находили минералы, имеющие форму многогранников. Позднее все многогранники стали называть кристаллами. Возникает даже наука – кристаллография, которая занимается геометрическим описанием различных форм кристаллов. Импульсом к зарождению и развитию криталлографии в древности послужили находки природных минералов с ярко выраженными различными гранными формами По представлению древнегреческих философов формы с одинаковыми гранями, одинаковыми вершинами и одинаковыми ребрами символизировали основные элементы природы: огонь изображали тетраэдром (четырехгранник), воздух – октаэдром (восемь граней), воду – икосаэдром (двадцать граней) и землю – кубом (шестигранник). Часто многогранники имели не одинаковые грани, они были составлены из граней нескольких форм. Названия форм крсталлов сохранились и используются до сих пор. .С изучением многогранников связано также нахождение законов симметрии. Слово "симметрия " в точном переводе с греческого означает "соразмерность". В одной из ниш здания знаменитой картинной галереи "Прадо" в Мадриде стоит мраморная статуя, изображающая красивую женщину. Надпись на цоколе свидетельствует о том, что это статуя богини симметрии. Существование такой статуи служит доказательством того, что понятие о симметрии появилось в очень давние времена, задолго до того, как симметрия стала предметом науки – кристаллографии. Слово симметрия, по-видимому, ранее отождествлялось со словом "красота". "Обожествление" симметрии ясно указывает на то, что в древности, как и сейчас, она играла большую роль в искусстве. Как правило, никому не известны имена ученых, которые ввели новые понятия или термины. К таким понятиям в частности, относится и понятие об элементах симметрии, без которого невозможно представить себе науку кристаллографию а именно, о плоскостях симметрии, осях и центре симметрии. Относительно простейшего и важнейшего элемента симметрии – плоскости симметрии можно сказать определенно, что представление о ней сложилось у человека с незапамятных времен, поскольку обнаружить ее можно было непосредственно в фигурах зверей, птиц, насекомых, самого человека и великого множества самых обычных предметаов. Труднее было прийти к представлению об оси симметрии как о такой прямой, при вращении вокруг которой фигура совмещается с собой несколько раз, пока не окажется в исходном положении. Принято было называть ось симметрии осью н-го порядка, если фигура, обладающая этой осью, совмещается с собой при полном повороте вокруг оси н-раз. Порядок осей у кристаллов невелик – 1, 2, 3, 4, 6. Центром симметрии называется такая точка, по обе стороны от которой в любом направлени находятся одинаковые точки, грани и ребра фигуры.

Тайна природы кристаллов

Трудно представить себе человека, не встечавшегося с кристаллами в повседневной жизни. Они существуют в природе, в быту и даже в человеческом организме. Всем известны кристаллы воды - лёд, снег, снежинки, часто встречаемся с процессом засахаривания варенья, меда (кристаллы сахарозы), с появлением кристаллов винной кислоты, с образованием кристаллов в печени или почках человека. А драгоценные камни: алмаз, тораз, изумруд, рубин и т.д. Сколько создано легенд и детективных историй о знаменитых драгоценностях, таким кристаллам приписывали мистические свойства. Красота, цвет и симметрия кристаллов (в том числе и специально обработанных) с давних времен использовались в качестве украшений, амулетов. Минералоги рассматривали кристаллы как вечные, застывшие и неизменные творения природы, которые следует хранить в музеях, и которые резко отличаются от живой природы- растений, животных.Лишь в ХV11 – ХV111 веках появились первые научные взгляды на природу крсталлов. Было предположено, что кристалл построен из мельчайших "кирпичиков". Рассматривая внимательно разбитый кристалл можно было обнаружить, что отколовшиеся кусочки имеют правильную форму, подобную форме большого кристалла (их "родителя"). Хотелось предположить, что форма сохраняется даже у крпичиков, невидимых глазом. Тайна такого невидимого мельчайшего "кирпичика " была открыта при исследовании явления дифракции рентгеновских лучей только в начале ХХ века (М.Лауэ, 1912г.). Метод дал возможность измерять расстояния между материальными частицами, составляющими упорядоченную пространственную решетку. Открытие дифракции рентгеновских лучей (называемых также Х - лучи) произвело полный переворот в кристаллографии. Появилась новая область кристаллохимии - рентгеноструктурный анализ, давший возможность изучать структуру кристаллов на уровне атомов. Для таких исследований требовались монокристаллы т.е. кристаллы, состоящие из одного индивидуума, хотя и небольшого размера. Пионерами в исследование атомной структуры кристаллов были отец и сын Брэгги, определившие структуру поваренной соли, алмаза и некоторых других минералов. Возникла необходимость в новых объектах - монокристаллах, невстречавшихся в природе.

Дальнейшее развитие кристаллографии пошло по трем руслам:

1. Изучение атомного строения кристаллов.

2. Исследование процессов зарождения и роста кристаллов, нахождение методов их выращивания.

3. Изучение новых физических свойств кристаллов, привязанных к их атомной структуре, и использование искусственно полученных кристаллов с заданными свойствами в различных отраслях науки и техники.

Искусственные кристаллы

Итак, искусственные кристаллы. Их также называют синтетическими, чтобы подчеркнуть, что такие кристаллы, в отличие от природных минералов, получены в лабораторных условиях.Трудно сказать, когда было обнаружено; что кристаллы могут зарождаться и расти при испарении водных растворов сахара, гипосульфита или поваренной соли. Во всяком случае, такие факты были хорошо известны еще до возникновения научной химии, минералогии и кристаллографии. Интересно, что до начала ХХ века химики уже научиись очищать различные вещества с помощью многократной перекристаллизации, а кристаллогафы умели получать из растворов мелкие хорошо образованные кристаллы для исследования их оптических и других свойств.Казалось бы, неподвижная, как бы застывшая, геометрически правильная внешняя форма кристаллов проиворечит понятию о жизни, как о чем-то неустойчивом, непрерывно меняющем свой облик. Однако, исследования в области кристаллизации показали, что всякий кристалл, как и все существующее в природе, претерпевают со временем ряд изменений, составляющих то, что условно называют его "жизнью".

Кристаллы зарождаются, растут, питаются, разрушаются, подвергаются регенерации, старению, усталости, срастаются между собой и даже пожирают друг друга. Все эти термины, взятые из биологии, исторически отражают несогласие натуролистов Х!Х столетия с теми их предшественниками, которые рассматривали кристаллы как вечные и неизменные творения природы.Однако, не только классики-естествоиспытатели, но и ученые более поздних поколений ограничивались, как правило, наблюдательными опытами и общими суждениями. Описательная стадия стала отступать лишь к 20-30-м гг. ХХ века.

О том же говорит и статистика: до 1970 года число публикаций по росту кристаллов росло экспоненциально. Экстраполируя экспоненту назад ко времени, когда число публикаций было равно одной в год, мы придем примерно к 1915 г. Сейчас ежегодно выходит несколько тысяч публикаций. В них исследуются процессы зарождения кристаллов, структуры их поверхностей, процессы роста из газа, раствора, расплава, при химичеких реакциях и электролизе, образование дефектов в растущих кристаллах. Эти научные исследования очень нужны практике – промышленность выпускает тысячи тонн кристаллов для электроники, вычислительной техники, оптикии, акустики. Развитие кристаллографии и ее двух ветвей -кристаллофизики – исследование физических свойств кристаллов, и кристаллохимии- исследования структуры кристаллов теперь в большей степени зависит от наличия новых синтетических кристаллов.

Получить небольшой кристалл неконтролируемого качества – не слишком сложная проблема. А вот добиться заданых свойств в очень большом или даже в маленьком кристалле очень трудно, и этот процесс иногда занимает десятилетия.

Как же получают (выращивают) кристаллы

Размеры монокристаллических образований, с которыми имеют дело ученые и производственники, занимают шкалу от нанометров (10-9м) до 1 метра длиной и 0,5 метра радиусом, Ниже будут приведены методы выращивания массивных, видимых невооруженным глазом кристаллов. Для получения монокристаллов малой толщины (пленок) или нанометровых образований (фулерены, нанотрубки) используют другие методы.Выращивание кристаллов – это сложный физико- химический процесс, течение которого зависит от многих самых разнообразных факторов, и в котором четко прослеживается атомная природа вещества. Процессы кристаллизации представляют собой фазовые превращения, которые соответствуют переходу атомов из вещества с полностью или частично неупорядоченной кофигурацией (пар, жидкость, аморфное состояние) в вещество с упорядоченной конфигурацией кристаллической решетки. Количество методов выращивания монокристаллов ограничено числом возможных таких переходов в кристаллическое состояние.

Рост из газовой фазы

Кристаллизация многих практически важных веществ при физической конденсации из паров, состоящих из атомов или молекул элементов, образующих кристалл, трудна ввиду малых скоростей роста и низкого давления паров нужных компонентов. Рост из газовой фазы с участием химических реакций, когда газ состоит из различных химических соединений атомов, образующих кристалл, нашел большее применение, особенно при получении пленок, нитевидных кристаллов, нанокристаллов.

Рост из растворов

Выращивание кристаллов из растворов считают наиболее универсальным методом. Кристаллизуемое вещество находится в чистом растворителе или в растворителе, содержащим добавки. Из-за небольшой скорости роста кристаллы в растворах обычно растут ограненными, т.е. покрываются атомно гладкими поверхностями.Растворители и условия выращивания кристаллов (состав, температура, давление) подбираются на основе физико-химических данных кристаллизуемого вещества. Растворителями могут служить как соединения, не входящие в состав кристалла, так и соединения из компонентов выращиваемого кристалла. Чаще всего в качестве растворителя испольуют воду, в которой растворяются многие неорганические вещества.Органические вещества, которые не растворяются в воде, кристаллизуют из органических растворов. Особые случаи роста кристаллов из растворов связаны либо с приложением давления в замкнутом объеме (специальные аппараты – автоклавы), либо с высокой температурой, когда в качестве растворителя используют расплавленные вещества. Первые называют гидротермальные растворы, вторые – высокотемпературные растворы (растворы в расплаве).

Израиль, Реховот, июнь, 2009 г.

Copyright © доктор В. Ляховицкая